Workshop 3, part 2: Assessment and treatment of poststroke spasticity applying the GAS method

Rui Prado Costa

From the Porto University Center of Medicine Stroke Update Course, Porto, Portugal. 26–27 June 2018.

Abstract

Poststroke spasticity is a neurological condition characterized by a velocity-dependent increase in muscle tone, loss of joint range, pain and loss of function [1, 2]. Spasticity management requires an interprofessional and multidimensional approach to restore the functionality which includes physical therapy, occupational therapy and medical care interventions [3-6]. Standardized measures before and after treatment and interventions must be used for assessment purposes and may include measures of impairment, activity limitation and participation as well as achievement of the patient’s own goals. Treatment goals oriented to each patient deficit or impairment, in an individual and specific way, is an important feature of neurological rehabilitation [7]. This goal-oriented approach can be assessed using a goal setting tool such as the goal attainment scaling (GAS). The GAS is a tool that provides an individualized criterion referenced measure of a patient’s goal achievement. It involves the patient in setting their own goals in multiple domains and assists the team with organizing, targeting and defining the rehabilitation process [8-10]. The GAS is being increasingly being used in the context of spasticity management [5, 6, 11-21] and has been shown to be sensitive to changes following focal intervention, such as Botulinum toxin, that are not detected by more global measures [11, 12, 19, 22]. When spasticity is present in multiple muscles, the GAS can be an assistive tool to guide clinicians in determining which muscles are a priority for injection to serve a specific goal [17, 21]. GAS is supporting the evidence of Botulinum toxin in improvement on functional level, activity limitations and quality of life in addition to the control of muscle tone and spasticity [12-14, 21, 22].

References:


© 2018 Costa, RP. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.