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Abstract

Background: Cerebral autoregulation (CA) is the physiological mechanism that keeps the cerebral blood flow velocity 
(CBFV) relatively constant despite changes in arterial blood pressure (ABP). Currently, transfer function analysis (TFA) is 
widely used to assess CA non-invasively. TFA is based on the assumption that CA is a linear process, however, in reality 
CA is a non-linear process. This study explores the usability of convergent cross mapping (CCM) as a non-linear analysis 
technique to assess CA.

Methods: CCM determines causality between variables by investigating if historical values of a time-series X(t) can 
be used to predict the states of a time-series Y(t). The Pearson correlation is determined between the measured Y(t) 
and the predicted Y(t) and increases with increasing time-series length to converge to a plateau value. When used for 
CA, normal and impaired CA should be distinguishable by a different plateau value. With  impaired CA, ABP will have 
a stronger influence on CBFV, and therefore the CBFV signal will contain more information on ABP. As a result, the cor-
relation converges to a higher plateau value compared to normal CA. The CCM method was validated by comparing 
normal CA (normocapnia: breathing 0-2% CO

2
) with a model of impaired CA (hypercapnia: breathing 6-7% CO

2
).

Results: CCM correlation was higher (p=0.01) during hypercapnia (0.65 ± 0.16) compared to normocapnia (0.51 ± 0.18). 

Conclusion: CCM is a promising technique for non-linear cerebral autoregulation estimation.
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Introduction

The high metabolic demand of the brain requires an ad-
equate cerebral blood flow (CBF). However, changes in 
arterial blood pressure (ABP) or intracranial pressure may 
influence CBF. To keep CBF relatively constant and to re-
turn CBF to baseline after a fast change in ABP, adaption 
of the cerebrovascular resistance (CVR) occurs. This pro-
cess is called  cerebral autoregulation (CA) [1]. When CA 
is disturbed, the brain may become excessively sensitive to 
fluctuations in ABP, causing hypo- and/or hyperperfusion. 
Hypo- and hyperperfusion can lead to ischemia or haem-
orrhages, respectively [2]. CA failure has been associated 
with increased morbidity and mortality [3]. Therefore, the 
ability of accurately quantifying the quality of CA may be 
of great importance in clinical practice.

CA can be determined as static CA or dynamic CA. 
With static CA, the response of the CBF to changes in ABP 
is studied in a semi-steady state, i.e. a measurement of CBF 
is obtained first at a constant baseline ABP and constant 
CBF, followed by another measurement that is taken af-
ter the autoregulatory response to a manipulation of ABP 
has been completed [4]. However, static CA represents the 
overall effect of the autoregulatory action, but does not ad-
dress the time in which this is achieved.

The use of Transcranial Doppler (TCD) ultrasound 
combined with servo-controlled finger photoplethysmog-
raphy makes it possible to measure the process of CA itself, 
the dynamic CA [2, 5]. Ideally, clinical monitoring of CA 
should be non-invasive, continuous, bedside, and precise. 
Because static CA measurement only provides steady-state 
point measurements and therefore is not a continuous 
measurement, the dynamic approach is preferable. 

Despite the importance of measuring dynamic CA, there 
is no consensus about the best way to analyze dynamic CA 
[6]. Currently, the most frequently described method in the 
literature is transfer function analysis (TFA) [6]. However, 
this method is based on the assumption that the relation be-
tween ABP and CBF is linear, while physiologically CA ex-
hibits nonlinear dynamics [7]. In our study, a new non-lin-
ear analysis method, convergent cross mapping (CCM) is 
applied to asses dynamic CA. Originally CCM was proposed 
to detect causality in complex ecosystems. According to its 
definition, CA can be quantified as the causal influence of 
ABP on CBF and this causal influence can be determined 
with CCM. Therefore the goal of this study is to explore the 
use of CCM in assessing dynamic CA.

Methods

Experimental procedure
The CCM model was validated by comparing normocap-
nic data with hypercapnic data. Hypercapnia causes vaso-
dilation of the cerebral vasculature and can therefore be 
used as a model for impaired CA [8]. This study included 
19 healthy adults, male and female, with an age of 69 ± 4 

(mean ± SD). ABP was measured non-invasively in the mid-
dle finger of the right hand using photoplethysmography 
(Finapres Medical Systems, Amsterdam, the Netherlands). 
The hand and arm were supported securely and comfort-
ably with a sling, providing a stable position of the hand 
and arm at the heart level. It has been shown that ABP mea-
sured indirectly using the Finapres is a reliable technique to 
track changes in ABP that correlate well with auscultatory 
ABP measurements in the upper arm  [9]. TCD is used to 
measure CBF velocity (CBFV) in the middle cerebral artery 
(MCA) by insonating the left and right MCA using a 2 MHz 
TCD probe (Multi-Dop, Compumedics DWI, Germany)
[10]. It is assumed that changes in CBFV represent changes 
in CBF, because the diameter of the vessel remains constant 
[8, 11]. End tidal CO2 (etCO2) was monitored with a nasal 
cannula using capnography (Biopax Systems, Goleta, Ca, 
USA). ABP, CBFV and etCO2 were recorded with a 200 Hz 
sampling frequency.

Subjects were asked to inhale a gas mixture mimick-
ing room air, containing 0% CO2, 21% O2, and 79% N2 
through a tightly fitting mouthpiece until a stable plateau 
of CBFV had been reached. Next, the percentage of CO2 
was increased every 30 seconds, until a CO2 concentration 
of 7% was obtained. The first 90 seconds with a 0-2% CO2 
concentration and the last 90 seconds with 6-7% CO2 were 
selected as normocapnia and hypercapnia, respectively. 
Beat-to-beat data of the ABP and CBFV were obtained us-
ing a low pass fourth-order Butterworth filter with a cut-
off frequency of 0.5 Hz. Thereafter, CBFV and ABP were 
downsampled to a sampling frequency of 10 Hz.

Data analysis

Mathematical background of convergent cross mapping
Sugihara et al. [12, 13] presented CCM as a new non-lin-
ear analysis method to determine causality between vari-
ables in a dynamical system. CCM is described in detail by 
Sugihara et al [12, 13]. In short, a dynamical system can be 
represented by a so called attractor manifold (M). Figure 

1A depicts as example the manifold of the Lorentz attractor 
consisting of three variables, represented by the time-series 
X(t), Y(t) and Z(t). Interestingly, the dynamics of a system 
can also be represented using only one of the time-series, 
for example Y(t). Lagged coordinates of this time-series, 
for example Y(t-τ) and Y(t-2τ) can be used to reconstruct 
a shadow manifold My. (Figure 1B). Tau (τ) is defined as a 
number of samples. My reproduces the two-lobed butter-
fly of M, i.e. My represents the dynamics of M. Similarly, 
shadow manifolds Mx and Mz can be reconstructed using 
X(t) and Z(t), respectively. CCM consists of two main steps 
that use these shadow manifolds to determine causality be-
tween variables: cross mapping and convergence.

Cross mapping
In a dynamical system,  consisting of two variables (X(t) 
and Y(t)), cross mapping investigates if it is possible to 
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Figure 1. (a) Attractor Manifold (M) of the Lorenz attractor. A point of M is defined by X(t), Y(t) and Z(t). (b) Shadow manifold My 
with E=3 dimensions and τ = 1.4 seconds. Each point on the manifold is defined by Y(t), Y(t-τ) and Y(t-2τ). The grey area in A corresponds to the grey area in B. 
E = dimensions of the shadow manifold, τ = time-lag. Adapted from Sugihara et al. [12].

predict a point on My from Mx using the nearest neighbor 
principle. 
This nearest neighbor principle is depicted in Figure 2. 
Point A is a random point on Mx and A’ is the in time cor-
responding point of A on My. The basic principle is that 
if nearest neighbors of A on Mx can accurately predict A’ 
on My, it can be stated that historical values of X(t) can 
be used to estimate states of Y(t). This is only possible if 
X(t) contains information on Y(t), in other words as Y(t) 
causally influences X(t). 
Cross mapping is applied to each point on Mx resulting in 
a prediction of Y(t): YPred(t). To estimate the accuracy of 
the YPred(t), the correlation between the YPred(t) and Y(t) 
is determined.

Convergence
Convergence is based on the fact that the longer the 
time-series length of X(t) and Y(t), the smaller the dis-
tance between the trajectories on the manifold. As a re-
sult, the estimation error decreases. Therefore, if Y(t) 
causally influences X(t), the correlation should increase to 
a plateau value with increasing time-series length, which 
is defined as convergence. The faster the convergence the 
stronger the coupling between the two variables. 
Figure 3 illustrates the convergence principle [13]. The 
cases that Y(t) does, and Y(t) does not causally influ-
ence X(t) are represented by the solid and dashed line, 
respectively.

Validation of CCM 
CCM is applied to determine CA quality during normo-
capnia (0-2% CO2) and hypercapnia (6-7% CO2). As CA 
quality can be quantified as the causative effect of ABP on 
CBFV, the shadow manifold of CBFV was used to pre-
dict ABP. Generically, the shadow manifold maps 1:1 to 
the original manifold M. If a 1:1 mapping occurs then the 

shadow manifold is defined as an embedding [14]. Optimal 
embedding parameters, embedding dimension E and lag τ, 
were determined with the method of Gautama et al. [15], 
which is based on differential entropy. The determined op-
timal embedding parameters were E is 3 dimensions and τ 
is 1 sample. In this study, the correlation corresponding to 
the plateau value was used instead of the rate of conver-
gence. A window of 890 samples was used to calculate the 
plateau value. Shifting the window of 890 samples through 
the entire dataset results in 10 correlations of which the 
mean is determined. The complete algorithm of CCM is 
described in more detail in the Supplementary materials of 
Sugihara et al. [13].

Statistical analysis
Results are presented as means ± standard deviation. Sta-
tistical significance was tested using a paired t-test. Signif-
icance was set at p < 0.05. 

Results

Figure 4 depicts the correlation results for normocapnia 
and hypercapnia. The correlation differed between normo-
capnia (0.51 ± 0.18) and hypercapnia (0.65 ± 0.16), p = 0.01.

Discussion

Our study showed that the non-linear method of CCM is 
able to distinguish normal dynamic CA from impaired dy-
namic CA. In clinical practice, the ability to measure CA 
may be of great importance, as impaired CA can result in 
hypo- or hyperperfusion of the brain. Impaired CA is also 
associated with increased morbidity and mortality [3]. 

Several methods have been developed to measure CA, 
however no gold standard exists. In literature, TFA is cur-
rently the most applied method to quantify CA. However, 

(a) (b)
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(a)

(b)

Cross mapping

Figure 2. The nearest neighbor principle. (a) Nearest neighbors (triangles) of point A (dot) on Mx are also nearest neighbors of the in time corresponding 
point A’ on My. Therefore Mx can be used to estimate the states of Y(t), i.e. Y(t) causally influences X(t). (b) Nearest neighbors (triangles) of point A (dot) on Mx are not 
nearest neighbors of point A’ on My. Therefore Mx cannot be used to estimate the states of Y(t). Mx: shadow manifold of M with time-lagged coordinates of X(t) (E=2). My: 
shadow manifold of M with time-lagged coordinates of Y(t) (E = 2). E = dimension of the shadow manifold. Adapted from Sugihara et al. [13].

Figure 3. Principle of convergence. Solid line: Y causally influences X. 
Dashed line: Y does not causally influence X. The solid line shows convergence 
with increasing time-series length while the dashed line does not. Adapted from 
Sugihara et al. [13].

Principle of convergence

this technique assumes that CA is a linear process, while 
in fact CA exhibits non-linear dynamics. Zhang et al. [16] 
pointed out that a coherence <0.5 in the low frequency 
range using TFA is an indicator of non-linear behavior of 
CA. In addition, Mitsis et al. [7] showed that with the use 
of a non-linear model (Laguerre-Voltera network) a 20% 

reduction of the normalized mean square error was seen 
compared to a linear model when predicting CBFV based 
on the input ABP. 

CCM is a non-linear analysis technique, which was 
originally proposed by Sugihara et al. [12] to detect causal-
ity in complex ecosystems. They applied CCM on a classic 
predator-prey dynamic system. In a classic predator-prey 
dynamic system, there is bidirectional causality between 
the predator and the prey, i.e. they both causally influence 
each other. The correlation converged when predicting 
the state of the prey using the predator data and also when 
predicting the state of the predator using the prey data. 
This indicates indeed that both factors causally influence 
each other. CCM was also applied on a dynamical system 
of sardines, anchovies and sea surface temperature. CCM 
showed that anchovies and sardines do not causally influ-
ence each other, but are both causally influenced by the sea 
surface temperature. 

As CCM takes non-linear dynamics into account, this 
technique might also be more accurate for the quantifica-
tion of CA. A well-functioning CA attenuates the effect of 
changes in ABP on changes in CBF, i.e. ABP has as only a 
small causal influence on CBF. During impaired CA the 
effect of changes in ABP on changes in CBF are less attenu-
ated, i.e. ABP has a larger causal influence on CBF. There-
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Time-series length



5Heskamp et al.

IJCNMH 2014; 1(Suppl. 1):S20

might therefore reduce the spread in CCM outcome. 
Third, the respiratory frequency is below 0.5 Hz and 

because the respiratory frequency is below the cut-off fre-
quency of 0.5 Hz, it is still present in the ABP and CBFV 
signal. If the respiratory frequency is very constant, pre-
diction of ABP using CBFV might be easier because the 
fluctuations caused by respiration are then very predict-
able. This might result in a high CCM outcome value. On 
the other hand, if the respiratory frequency is less constant, 
prediction of ABP using CBFV is harder, because the fluc-
tuations caused by the respiration are less predictable. This 
results in a lower CCM outcome value. Therefore, differ-
ences in variability of the respiratory frequency between 
subjects might be responsible for the large spread in CCM 
outcome. Using a low-pass filter with a cut-off frequency 
of 0.15 Hz might reduce the large spread in CCM outcome, 
because the breathing frequency is above 0.15 Hz. Because 
CA is most prominent in frequencies below 0.15 Hz, it can 
be justified to use a cut-off frequency of 0.15 Hz. 

Besides the large spread in CCM outcome values, it 
should also be noted that in this study the plateau value was 
used to quantify the causal influence of ABP on CBFV in-
stead of the rate of convergence as suggested by Sugihara et 
al. [12]. The choice for the plateau value was based on a pi-
lot study in which the validity of the model was investigated 
using the autoregulatory index of Tiecks et al. [4]. In this 
pilot study, the plateau value could discriminate the auto-
regulatory indexes. However, a situation might be possible 
in which the correlation does not converge, but remains 
horizontal (dashed line in Figure 3). In this case, using 
only the plateau value, might give inaccurate results. If this 
correlation is high, the plateau value falsely represents a 
high influence of the ABP on CBFV while actually there 
is no influence at all. Using the rate of convergence over-
comes this problem. In our study, convergence was seen 
in all subjects during normo- and hypercapnia. Therefore, 
using the plateau value was seen as a valid choice in this 
study. Furthermore, calculating the rate of convergence is 
more time-consuming than calculating the plateau value. 
This plateau value is therefore more promising for bedside 
CA monitoring. 

Furthermore it should be noted that the used embed-
ding parameters were E=3 dimensions and τ=1 sample. 
These embedding parameters were determined using the 
differential entropy technique [15]. A τ of 1 sample is a 
delay of 0.1 seconds, which is within one heartbeat. It is 
difficult to interpret this τ physiologically, because a τ of at 
least one heartbeat (± 8-10 samples) is expected.

Conclusions

The ideal clinical monitoring device of CA should be 
non-invasive, continuous, bedside and precise. CCM is in-
deed a non-invasive measurement which uses spontaneous 
fluctuations of the ABP and CBFV to assess CA. The use of 
spontaneous fluctuations has the additional advantage that 

fore the causal influence of ABP on CBF is a measure of 
impairment of CA and CCM can be applied to assess the 
functioning of CA.

In this study, the ability of CCM to quantify CA was ex-
plored using a hypercapnia model. Hypercapnia is a well-
known model to simulate impaired CA [17]. Hypercapnia 
causes vasodilation, reducing the ability of the cerebral 
vessels to respond to changes in ABP, leading to impaired 
CA. In our study a significantly higher CCM correlation 
value was found during hypercapnia which indicates a less 
efficiently functioning CA. This underlines the  potential 
of CCM to quantify CA. 

However, still a large spread is seen in the outcome of 
CCM. The standard deviation was 0.2 and 0.16 for normo- 
and hypercapnia, respectively. Therefore, optimization of 
this technique is necessary before it can be easily applied in 
clinical practice. 

There are several explanations for the large spread in 
CCM outcomes. First, the degree of impaired CA of each 
subject during hypercapnia is unknown and might differ 
between subjects. As a results, the spread in CCM outcome 
is large. However, breathing 7% CO2 is the physiological 
limit. Therefore it is likely that all subjects did reach their 
plateau of impaired CA. 

Second, besides the possible difference in effect of the 
CO2 on CA in subjects during hypercapnia, also the breath-
to-breath etCO2 fluctuations in normo- and hypercapnia 
circumstances between subjects might influence the correla-
tion. Mitsis et al. [18] showed that etCO2 fluctuations have a 
considerable effect in the lower frequencies, i.e. below 0.04 
Hz. Incorporating the breath-to-breath etCO2 fluctuations 

Effect of hypercapnia
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Figure 4. Correlation between real ABP and predicted ABP dur-
ing normocapnia and hypercapnia circumstances (n=19). Correla-
tion is significantly increased during hypercapnia (breathing 6-7% CO2) compared 
to normocapnia (breathing 0-2% CO2). 
* p<0.05. ABP = arterial blood pressure.
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no interventions have to be performed, making continu-
ously measuring CA possible. 

Furthermore, CCM can quantify CA using small data-
sets and the outcome of CCM is a single value, which is very 
important and practical for bedside monitoring. When the 
spread in CCM outcome can be reduced, perhaps with 
the aforementioned optimizations, CCM could be a very 
promising technique for future bedside monitoring of CA.
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