NMO-IgG is sufficient to cause the pathology of an NMO lesion without participation of T cells

Olaf Stuve

Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA

Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany

Neuromyelitis optica (NMO) is a demyelinating inflammatory disorder of the central nervous system (CNS) that is clinically and pathologically defined as the co-occurrence of optic neuritis and myelitis. Aquaporin (AQP)4 is considered a potential autoantigen in patients with NMO after an autoantibody, designated NMO-IgG, that binds to human (h) AQP4 was detected in the serum of the vast majority of patients with NMO. The presence of the NMO-IgG has led many neurologist and neuroimmunologists to believe that NMO may be a primarily B cell-mediated disease. However, there is evidence to suggest a cellular immune response in NMO during disease initiation or perpetuation. HLA haplotype analyses of patients with NMO suggest a positive association with HLA-DRB1* 03:01 (DR17), a gene that codes for a major histocompatibility class (MHC) II molecule that presents linear antigens to CD4+ T cells. Also, NMO-IgG is undetectable in a substantial number of patients with NMO. A NMO-IgG, antibody isotype switch from IgM to IgG could not occur without CD4+ T cell involvement, which are abundant-ly present in NMO lesions. B cell–depleting therapies are not consistently beneficial in patients with NMO. Finally, transfer of AQP4-reactive T cells into wild-type mice and rats results in neurological deficits and CNS inflammation.

Abstract

Point of view: No